วันอังคารที่ 21 กันยายน พ.ศ. 2553

กลไกร

อิทธิพลที่มีผลต่อการการเปลี่ยนแปลงของระดับน้ำในระหว่างเกิดพายุมีอย่างน้อย 5 อิทธิพล: อิทธิพลความกดอากาศ, อิทธิพลโดยตรงจากลมพายุ, อิทธิพลของการหมุนตัวของโลก, อิทธิพลของคลื่น, และอิทธิพลของปริมาณน้ำฝนที่ตก[1]

อิทธิพลความกดอากาศของพายุหมุนเขตร้อนจะทำให้ระดับของน้ำในทะเลเปิดยกตัวสูงขึ้นในเขตที่บรรยากาศมีความกดอากาศต่ำ และลดระดับต่ำลงในเขตบรรยากาศมีความกดอากาศสูง ระดับน้ำที่ยกตัวสูงขึ้นจะแปรผกผันกับความกดอากาศที่ต่ำลง เพื่อที่จะทำให้ความกดโดยรวมที่ระนาบของใต้ผิวน้ำคงที่ ผลกระทบนี้ทำให้ประมาณได้ว่าระดับน้ำทะเลจะเพิ่มสูงขึ้น 10 มิลลิเมตร (0.4 นิ้ว) ต่อทุกๆ 1 มิลลิบาร์[4]ที่ลดลงของความกดอากาศ[1]

ความแรงที่พื้นผิวลมเป็นสาเหตุโดยตรงของความสูงชันของพายุลม ปรากฏการณ์นี้รู้จักกันในชื่อ Ekman Spiral[5] มีข้อเท็จจริงที่ว่าความกดดันของลม(wind stress) เป็นสาเหตุของปรากฏการณ์การก่อตัวของลม นั่นคือมีแนวโน้มที่ระดับน้ำจะยกเพิ่มในด้านทิศเดียวกับกระแสลมที่พัดเข้าฝั่ง และระดับน้ำจะลดลงในด้านตรงกันข้าม เพราะเหตุนี้จึงเป็นธรรมดาที่พายุจะพัดน้ำซัดอ่าวในทิศทางไปของพายุ เพราะเหตุว่า (Ekman Spiral) มีผลจากการแผ่ในแนวฉากของลมที่ผ่านน้ำ และผลกระทบนี้จะแปรผกผันกับความลึกของน้ำ อิทธิพลความดันและการก่อตัวของลมในทะเลเปิดจะผลักดันน้ำเข้าสู่อ่าวในแนวเดียวกับอิทธิพลของน้ำขึ้นน้ำลง

อิทธิพลของการหมุนของโลกเป็นสาเหตุของ Coriolis effect[6] ซึ่งปรากฏการณ์จะทำให้ทิศทางกระแสน้ำ เบี่ยงโค้งไปทางขวาในซีกโลกเหนือ และเบี่ยงโค้งไปทางซ้ายในซีกโลกใต้จากอิทธิพลของการหมุนของโลก เมื่อโค้งของกระแสน้ำเข้าพุ่งปะทะกับชายฝั่งในแนวตั้งฉากจะไปเพิ่มขยายคลื่นที่ยกตัวให้เพิ่มขึ้น และหากโค้งของกระแสน้ำหันออกจากชายฝั่งมีผลให้คลื่นที่ยกตัวนั้นลดลง

อิทธิพลของคลื่น ขณะที่คลื่นได้รับกำลังจากลม โดยเฉพาะจากพลังของลมพายุ ลมที่มีพลังจะยกคลื่นให้ใหญ่และแรงในทิศทางเดียวกันกับแนวการเคลื่อนที่ของลม แม้กระนั้นก็จะเห็นผลการเปลี่ยนแปลงที่ผิวคลื่นเพียงเล็กน้อยในทะเลเปิด(ทะเลลึก) แต่มันจะมีผลให้คลื่นขยายตัวใหญ่และแรงขึ้นคลื่นนั้นเมื่อเข้าใกล้ชายฝั่ง เมื่อแนวคลื่นที่กำลังแตกตัวขนานกับหาดมันนำน้ำจำนวนมากซัดตรงเข้าสู่ฝั่ง ขณะที่คลื่นแตกตัวอนุภาคของน้ำที่เคลื่อนเข้าฝั่งนั้นมีโมเมนตัมจำนวนมาก จนอาจซัดกระเซ็นขึ้นไปตามความชันของหาดจนสูงเหนือระดับน้ำทะเลและคลื่นที่ตามมาในลูกที่สองถูกซัดสูงขึ้นก่อนที่มันจะแตกกระจาย

ปริมาณน้ำฝนที่ตกมีอิทธิพลมากตรงบริเวณปากแม่น้ำหรือปากอ่าว(estuaries)[7] (บริเวณที่น้ำจืดกับน้ำเค็มบรรจบกัน) ในพื้นที่เปิดเฮอร์ริเคนสามารถสร้างปริมาณน้ำฝนได้ถึง 12 นิ้วใน 24 ชม. และอาจจะสูงกว่าในพื้นที่ปิด ผลที่ตามมาคือ สัมปันน้ำ(watersheds )[8]( (ร่องเขาที่เป็นแนวร่องน้ำ)น้ำจะไหลบ่าอย่างเร็วระบายสู่แม่น้ำ นี่ทำให้ระดับน้ำเพิ่มสูงในระดับสูงสุดของระดับน้ำขึ้นบริเวณปากแม่น้ำ เป็นเพราะพายุขับดันคลื่นยกตัวจากมหาสมุทรและน้ำฝนที่ไหลมาจากปากแม่น้ำ(estuary)

เหตุการณืคลื่นพายุหมุนยกซัดฝั่งในประเทศไทย

ในอดีตประเทศไทยก็เคยเกิดปรากฏการณ์คลื่นพายุหมุนยกซัดฝั่ง เมื่อวันที่ 25-26 ตุลาคม พ.ศ. 2505 ขึ้นในภาคใต้ของประเทศไทย แหลมตะลุมพุก อำเภอปากพนัง จังหวัดนครศรีธรรมราช จากพายุหมุนเขตร้อนแฮเรียต มีเส้นผ่าศูนย์กลางขนาด 300 กิโลเมตร ความเร็วลม 180 - 200 กิโลเมตรต่อชั่วโมง ความเร็วในการเคลื่อนที่ 92.622 กิโลเมตรต่อชั่วโมง เกิดคลื่นยักษ์สูงประมาณยอดต้นสน(20 ม.) สร้างความเสียหายให้ 9 จังหวัดในภาคใต้เป็นอย่างมาก สถานที่ราชการ อาคารบ้านเรือน โรงเรียน วัด ถูกพายุพัดพังระเนระนาด การไฟฟ้าและสถานีวิทยุตำรวจเสียหายหนัก ไม่สามารถติดต่อกันได้ เรือที่ออกทะเลเสียหายมากมาย ต้นยาง ต้นมะพร้าว และต้นไม้อื่นๆ ล้มพินาศมหาศาล สวนยางนับแสนๆ ต้นโค่นล้มขวางเป็นสิบๆ กิโลเมตร มีผู้เสียชีวิต 911 คน, สูญหาย 142 คน, บาดเจ็บสาหัส 252 คน,ไม่มีที่อยู่อาศัย 10,314 คน, บ้านเสียหาย 42,409 หลังคาเรือน,โรงเรียน 435 หลัง


สโลช (SLOSH)

ตัวอย่างการเดินแบบจำลองสโลช (SLOSH run)ดูบทความหลัก: การพยากรณ์พายุหมุนเขตร้อน

ศูนย์พายุหมุนแห่งชาติได้พยากรณ์ไว้ว่าคลื่นพายุหมุนยกซัดฝั่งโดยใช้แบบจำลองสโลช หรือ SLOSH ซึ่งย่อมาจาก “คลื่นพายุหมุนยกซัดฝั่งจากพายุหมุนในทะเลสาบและบนแผ่นดิน” ในภาษาอังกฤษ คือ Lake and Overland Surges from Hurricanes. แบบจำลองนี้มีความแม่นยำภายใน 20 percent.[11] ข้อมูล “สโลช” รับเข้า (input) รวมถึงความกดอากาศส่วนกลางของพายุหมุนเขตร้อน, ขนาดของพายุ, การเคลื่อนตัวของพายุ, เส้นทางการเคลื่อนตัว, และความเร็วลมคงที่สูงสุด นอกจากนี้ยังต้องนำเอาลักษณะภูมิประเทศท้องถิ่น, การหันเหทิศทางของอ่าวและแม่น้ำ, ความลึกของก้นทะเล, การขึ้นลงเชิงดาราศาสตร์ของน้ำ (น้ำขึ้นน้ำลง) , รวมทั้งรูปโฉมทางกายภาพอื่นๆ เข้ามานับร่วมกันเพื่อการกำหนดกริดหรือตารางล่วงหน้าที่เรียกว่า “แอ่งสโลช” (SLOSH basin) แล้วจึงนำแอ่งสโลชมาทับซ้อนสำหรับเส้นแนวชายฝั่งทะเลด้านใต้และตะวันออกของแผ่นทวีปอเมริกา[12] ในการจำลองพายุบางครั้งอาจใช้แอ่งสโลชมากว่า 1 แอ่ง เช่นการเดินแบบจำลองสโลชแคทรินาซึ่งใช้ทั้งแอ่งทะเลสาบพอนชาร์เทรน/นิวออร์ลีนส์ และ แอ่งมิสซิสซิบปีซาวด์ร่วมกันเพื่อใช้กับการขึ้นฝั่งของพายุ (landfall) ของอ่าวเม็กซิโก

การบรรเทา
แม้การสำรวจทางอุตุนิยมจะเตือนภัยพายุหมุนหรือพายุร้ายแรงทั่วๆ ไปแล้วก็ตาม ในบางกรณีบางพื้นที่ที่มีความเสียงต่อน้ำท่วมชายฝั่งสูงเฉพาะที่บางแห่งจะมีการเตือนเกี่ยวกับคลื่นพายุหมุนยกซัดฝั่งเฉพาะเป็นครั้งๆ อยู่ด้วยเหมือนกัน ได้มีการปฏิบัติจริงอยู่แล้วหลายแห่ง เช่นประเทศเนเธอร์แลนด์[13] สเปน,[14][15] สหรัฐ,[16][17] และ สหราชอาณาจักร.[18]

กรรมวิธีเพื่อป้องคลื่นพายุหมุนยกซัดฝั่งเริ่มขึ้นหลังจากเหตุการณ์น้ำท่วมใหญ่ทะเลเหนือ เมื่อ พ.ศ. 2496 โดยการสร้างเขื่อนและประตูกั้นน้ำท่วม[12] (พนังกั้นคลื่นพายุหมุนยกซัดฝั่ง) ปกติจะเปิดให้น้ำและเรือผ่านเข้าออก แต่จะปิดเมื่อมีที่ท่าว่าอาจถูกคุกคามจากคลื่นพายุหมุนยกซัดฝั่ง พนังกั้นพายุยกที่สำคัญได้แก่พนัง Oosterscheldekering และ Maeslantkering ในเนเธอร์แลนด์ซึ่งเป็นส่วนหนึ่งของโครงการงานสามเหลี่ยม ( Delta Works project) และ พนังเทมส์ ( Thames Barrier) ที่ใช้ป้องกันกรุงลอนดอน

วันอังคารที่ 14 กันยายน พ.ศ. 2553

ประเมิณผลงาน 100 คะแนน

ขอให้เพื่อนๆ คุณครูและผูมีเกียรติทั้งหลาย ร่วมประเมิณผลงาน โดยมีคะแนนเต็ม 100 คะแนน ขอขอบคุณค่ะ ‼

วันพุธที่ 1 กันยายน พ.ศ. 2553

การสั่นพ้อง

การสั่นพ้อง (Resonance)


การสั่นพ้องคือการที่วัตถุสั่นด้วยความถี่ธรรมชาติโดยแอมปลิจูดของการสั่นมากขึ้นเรื่อยๆ ถ้าเป็นคลื่นเสียงก็จะทำให้เสียงดังมากขึ้น จนอาจทำให้วัตถุเสียหายได้ หรือเกิดความรำคาญได้ การสั่นพ้องเกิดขึ้นได้ 2 แบบคือ

1. การสั่นพ้องด้วยแรง หมายถึงการสั่นพ้องที่เกิดขึ้นโดยการออกแรงกระทำกับวัตถุเป็นจังหวะที่มีความถี่เท่ากับความถี่ธรรมชาติของวัตถุเป็นเวลานาน

เมื่อลมพัดที่ความเร็วคงตัวค่าหนึ่งเป็นเวลานาน ซึ่งแรงลมพอดีกับความถี่ธรรมชาติของสะพาน

ทำให้สะพานเกิดการสั่นพ้อง แอมปลิจูดของการสั่นที่มากขึ้นทำให้สะพานขาด



2. การสั่นพ้องด้วยคลื่น หมายถึงการสั่นพ้องที่เกิดขึ้นโดยการส่งคลื่นที่มีความถี่เท่ากับความถี่ธรรมชาติของวัตถุกระทบกับวัตถุเป็นเวลานาน ดูตัวอย่างเพิ่มเติมในเรื่องการสั่นพ้องของเสียง



ความถี่ธรรมชาติ (Natural Frequency)

เมื่อทำให้วัตถุสั่นหรือแกว่งอย่างอิสระ วัตถุจะสั่นหรือแกว่งด้วยความถี่คงที่ค่าหนึ่ง ซึ่งเรียกความถี่นี้ว่า “ความถี่ธรรมชาติ”

1. ความถี่ธรรมชาติในการแกว่งของลูกตุ้ม





รูป การแกว่งของลูกตุ้ม

การทดลองเรื่องการแกว่งของลูกตุ้ม



2. ความถี่ธรรมชาติในการสั่นของมวลติดสปริง



รูป แสดงการสั่นของมวลติดสปริง





การทดลองเรื่องการสั่นของมวลติดสปริง

3. ความถี่ธรรมชาติของการสั่นของเส้นเชือกที่ขึงตึง






รูป แสดงจำนวนลูปของคลื่นนิ่งในเส้นเชือก ที่ขึงตึง ยาว L จะสามารถเกิดคลื่นนิ่งที่มีตวามยาวคลื่นได้หลายค่า หรือเขียน เป็นสมการความสัมพันธ์ ได้ว่า

เมื่อ n = 1, 2, 3, ….. ความถี่ เรียกว่า ฮาร์มอนิกที่ n

เนื่องจากอัตราเร็วคลื่นในเส้นเชือกมีค่าขึ้นอยู่กับความตึงเชือก T และมวลต่อหน่วยความยาว μ

ดังนั้นจึงเขียนได้ว่า

การทดลองเรื่องการสั่นพ้องของคลื่นในเส้นเชือก

4. ความถี่ธรรมชาติของการสั่นของลำอากาศในท่อ

4.1 ท่อปลายปิดข้างหนึ่ง เมื่ออากาศในท่อสั่นตามยาว โดยอิสระจะเกิดคลื่นนิ่งขึ่นในท่อ ปลายปิดจะเป็นตำแหน่งบัพ(ของการกระจัด) ปลายเปิดจะเป็นตำแหน่งปฎิบัพ(ของการกระจัด) ดังนั้น ถ้าท่อยาว L



รูป แสดงจำนวนลูปของคลื่นนิ่งในท่อปิดด้านหนึ่ง ยาว L จะสามารถเกิดคลื่นนิ่งที่มีตวามถี่ได้หลายค่า หรือเขียน เป็นสมการความสัมพันธ์ ได้ว่า

เมื่อ n = 1, 3, 5, ….. ความถี่ เรียกว่า ฮาร์มอนิกที่ n และ v เป็นอัตราเร็วของเสียงในอากาศขณะนั้นซึ่งมีค่าขึ้นอยู่กับอุณหภูมิ คือ


การทดลองเรื่องการสั่นพ้องของคลื่นในท่อปลายปิดข้างหนึ่ง



4.2 ท่อปลายเปิดสองข้าง เมื่ออากาศในท่อสั่นตามยาว โดยอิสระจะเกิดคลื่นนิ่งขึ่นในท่อ ปลายเปิดทั้งสองข้างจะเป็นตำแหน่งปฎิบัพ(ของการกระจัด) ดังนั้น ถ้าท่อยาว L





รูป แสดงจำนวนลูปของคลื่นนิ่งในท่อเปิดสองด้าน ยาว L จะสามารถเกิดคลื่นนิ่งที่มีตวามถี่ได้หลายค่า หรือเขียน เป็นสมการความสัมพันธ์ ได้ว่า

เมื่อ n = 1, 2, 3, ….. ความถี่ เรียกว่า ฮาร์มอนิกที่ n และ v เป็นอัตราเร็วของเสียงในอากาศขณะนั้นซึ่งมีค่าขึ้นอยู่กับอุณหภูมิ คือ


การทดลองเรื่องการสั่นพ้องของคลื่นในท่อปลายเปิดทั้งสองข้าง



การทดลองเรื่องการสั่นพ้องของคลื่นในท่อปลายปิดทั้งสองข้าง

5. ความถี่ธรรมชาติของวัตถุแผ่นบาง แผ่นวัตถุบางที่อ่อนตัวและถูกขึงให้ตึงหรือตรึงขอบได้ เช่น แผ่นหน้ากลอง เมื่อทำให้สั่นจะสั่นด้วยความถี่ธรรมชาติได้หลายค่า การศึกษาเกี่ยวกับความถี่ธรรมชาติของแผ่นวัตถุบางนี้มีประโยชน์มากในการออกแบบไดอะแฟรมของลำโพง



รูป แสดงการสั่นที่ความถี่ธรรมชาติของแผ่นบางรูปวงกลม

การเลี้ยวเบนของคลื่น

การเลี้ยวเบนของคลื่น (Diffraction of Wave)

การเลี้ยวเบนของคลื่นเกิดขึ้นได้ เมื่อคลื่นจากแหล่งกำเนิดอาพันเดินทางไปพบสิ่งกีดขวางที่มีลักษณะเป็นขอบหรือช่องที่มีขนาดใกล้เคียงกับความยาวคลื่น ทำให้คลื่นเคลื่อนที่เลี้ยวผ่านสิ่งกีดขวางไปได้ ซึ่งอธิบายได้โดยใช้หลักของฮอยเกนส์ ซึ่งกล่าวไว้ว่า "ทุก ๆ จุกบนหน้าคลื่นอาจถือได้ว่าเป็นจุดกำเนิดคลื่นใหม่ที่ให้คลื่นความยาวคลื่นเดิมและเฟสเดียวกัน"

การแทรกสอด

การแทรกสอด (Interference)



เกิดขึ้นเมื่อคลื่นอาพัน 2 ขบวนเคลื่อนที่ผ่านกันในเวลาและสถานที่เดียวกัน แล้วเกิดการรวมกันของคลื่นเป็นไปตามหลักการซ้อนทับกัน ทำให้เกิดเป็นแนวบัพ (Node) และแนวปฏิบัพ (Anti-node) อยู่กับที่ เราเรียกปรากฎการณ์นี้ว่าคลื่นนิ่ง (Standing wave)



แหล่งกำเนิดคลื่นอาพัน : (Coherence Sources) คือ แหล่งกำเนิดคลื่นตั้งแต่ 2 อัน ขึ้นไป ผลิตคลื่นที่มีความถี่เท่ากัน และมีเฟสต่างกันคงที่เสมอ



แนวบัพ (Node) : เป็นตำแหน่งหรือแนวที่คลื่นรวมกันแบบหักล้างกันตลอดเวลา



แนวปฏิบัพ (Anti-Node) : เป็นตำแหน่งหรือแนวที่คลื่นรวมกันแบบเสริมกันตลอดเวลา

การหักเห

การหักเห (Refraction)


เมื่อคลื่นเดินทางไปพบรอยต่อระหว่างตัวกลางสองชนิดแล้ว คลื่นที่เคลื่อนที่เข้าไปตัวกลางใหม่เรียกว่าคลื่นหักเห

การสะท้อนและการหักเหเกิดขึ้นพร้อมกันได้

การหักเหเกิดจากการที่คลื่นมีอัตราเร็วในตัวกลางไม่เท่ากันนั่นคือ เมื่อคลื่นเดินทางจากตัวกลางหนึ่งผ่านรอยต่อเข้าไปในอีกตัวกลางหนึ่งปริมาณของคลื่นที่เปลี่ยนไปคือ อัตราเร็ว ความยาวคลื่น แต่ปริมาณที่มีค่าคงเดิมคือความถี่

ในกรณีของคลื่นน้ำ อัตราเร็วของคลื่นจะขึ้นอยู่กับความลึก คือ

เมื่อ v = อัตราเร็วคลื่นผิวน้ำ
g = ความเร่งโน้มถ่วงของโลก
d = ความลึกของน้ำ

จากการทดลอง พบว่าการหักเหเป็นไปตาม "กฎของสเนล" (Snell's Law) คือ

“ สำหรับตัวกลางคู่หนึ่ง ๆ อัตราส่วนของค่า sine ของมุมในตัวกลางตกกระทบ (ตัวกลางที่ 1 ) ต่อค่า sine ของมุมในตัวกลางหักเห ( ตัวกลางที่ 2 ) จะมีค่าคงที่เสมอ ”

จากกฎของสเนล เขียนเป็นสมการได้ว่า


หรือ


เมื่อ คือ มุมตกกระทบในตัวกลาง 1
คือ มุมหักเหในตัวกลาง 2
คือ อัตราเร็วของคลื่นตกกระทบในตัวกลาง 1
คือ อัตราเร็วของคลื่นหักเหในตัวกลาง 2
คือ ความยาวคลื่นตกกระทบในตัวกลาง 1
คือ ความยาวคลื่นหักเหในตัวกลาง 2